Small Business Innovation Research/Small Business Tech Transfer

Enhanced Reliability MEMS Deformable Mirrors for Space Imaging Applications, Phase II

Completed Technology Project (2012 - 2015)

Project Introduction

The goal of this project is to develop and demonstrate a reliable, fault-tolerant wavefront control system that will fill a critical technology gap in NASA's vision for future coronagraphic observatories. The project outcomes include innovative advances in component design and fabrication and substantial progress in development of high-resolution deformable mirrors (DM) suitable for space-based operation. Space-based telescopes have become indispensible in advancing the frontiers of astrophysics. Over the past decade NASA has pioneered coronagraphic instrument concepts and test beds to provide a foundation for exploring feasibility of new approaches to high-contrast imaging and spectroscopy. From this work, NASA has identified a current technology need for compact, ultra-precise, multi-thousand actuator DM devices. Boston Micromachines Corporation has developed microelectromechanical systems (MEMS) DMs that represent the state-of-the-art for scalable, small-stroke high-precision wavefront control. The emerging class of high-resolution DMs pioneered by the project team has already been shown to be compact, lowpower, precise, and repeatable. This project will develop a system that eliminates the leading cause of single actuator failures in electrostaticallyactuated wavefront correctors – snap-through instability and subsequent electrode shorting and/or adhesion. To achieve this we will implement two innovative, complementary modifications to the manufacturing process that were proven successful in Phase I. We will develop a drive electronics approach that inherently limits actuator electrical current density generated when actuator snap-down occurs, and we will modify the actuator design to mitigate adhesion between contacting surfaces of the actuator flexure and fixed base electrode in the event of snap-down. This project will results in a MEMS DM with 2048 actuators and enhanced reliability driven by currentlimiting drive electronics.

Enhanced Reliability MEMS Deformable Mirrors for Space Imaging Applications Project Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	2
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Images	3
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Enhanced Reliability MEMS Deformable Mirrors for Space Imaging Applications, Phase II

Completed Technology Project (2012 - 2015)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Boston Micromachines Corporation	Lead Organization	Industry	Cambridge, Massachusetts
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Primary U.S. Work Locations	
California	Massachusetts

Project Transitions

April 2012: Project Start

April 2015: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137387)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Boston Micromachines Corporation

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Steven A Cornelissen

Co-Investigator:

Steven Cornelissen

Small Business Innovation Research/Small Business Tech Transfer

Enhanced Reliability MEMS Deformable Mirrors for Space Imaging Applications, Phase II

Completed Technology Project (2012 - 2015)

Images

Project Image

Enhanced Reliability MEMS
Deformable Mirrors for Space
Imaging Applications Project Image
(https://techport.nasa.gov/imag
e/134604)

Technology Maturity (TRL)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

